
Distributed Speculative Program Parallelization

Bryan Jacobs, Tongxin Bai, and Chen Ding
University of Rochester

{jacobs,bai,cding}@cs.rochester.edu

Abstract
Most computing users today have access to clusters of multi-core
computers. To fully utilize a cluster, a programmer must combine
two levels of parallelism: shared-memory parallelism within a ma-
chine and distributed memory parallelism across machines. Such
programming is difficult. Either a user has to mix two programming
languages in a single program and use fixed computation and data
partitioning between the two, or the user has to rewrite a program
from scratch. Even after careful programming, a program may still
have hidden concurrency bugs. Users who are accustomed to se-
quential programming do not find the same level of debugging and
performance analysis support especially for a distributed environ-
ment.

In this paper we present a distributed parallelization system
named D-BOP , which enables software speculative parallelization
to cross multiple machines. D-BOP provides the same guarantee
of preserving the outputs of the original sequential program as
some of the shared memory speculative parallelization systems do.
The execution of a D-BOP parallelized program is data race free,
deadlock free and deterministic.

1. Introduction: From BOP To D-BOP
Computer users are increasingly interested in parallel program-
ming because they want to utilize clusters of multi-core processors,
which is capable, in theory, of performance tens or hundreds of
times of a single personal computer. Although compiler techniques
are effective in exploiting loop parallelism in scientific code writ-
ten in Fortran they are not a sufficient solution for C/C++ programs
where both the degree and the granularity of parallelism are not
guaranteed or even predictable.

Manual parallel programming is becoming easier. There are
ready-to-use parallel constructs in mainstream languages such as
Fortran, C, C++ and Java, in threading libraries such as Microsoft
.NET, Intel Thread Building Blocks, in domain-specific languages
such as Google’s Map Reduce and Intel Concurrent Collection
for C++. Still, writing parallel code is considerably harder than
sequential programming because of non-determinism. A program
may run fine in one execution but generate incorrect results or
run into a deadlock in the next execution because of a different
thread interleaving. It may acquire new data races when ported to a
machine with a different hardware memory consistency model. In
addition, important types of computations such as mesh refinement,

[copyright notice will appear here]

clustering, image segmentation, and SAT approximation cannot be
parallelized without speculation since conflicts are not known until
the computation finishes [7, 8].

In our PLDI07 paper [4] we present BOP, a speculative paral-
lelization system that enables usual programmers with limited par-
allel programming experiences to transform sequential programs
into parallel. BOP’s goal is to free programmers from heavy duties
of code rewriting and debugging in demand of parallelization while
at same time to obtain significant coarse-grained parallelisms at run
time.

BOP is both a parallelization language and a runtime system.
The BOP language is essentially comprised of three types of prim-
itives: parallelism hints, which mark the possibly parallel regions,
dependence hints, which express possible dependencies between
parallel tasks, and data-checking hints, which verify “private” data
by value-based checking.

The BOP runtime is a process-based speculation management
system where speculation is realized by forking a new process and
run into the “future”. Data accesses are monitored on page granu-
larity so that we can leverage OS-supported page protection mech-
anism to avoid code instrumentation. Modern OS performs copy-
on-write and replicates pages on demand. In BOP, such replication
removes false dependence conflicts and makes error recovery triv-
ial to do. We can simply discard an erroneous speculative task by
terminating the process.

Next we extend the process-based design to enable program
parallelization in a distributed environment.

2. Distributed Speculation
The D-BOP run-time system has three types of processes.

• A control process manages shared system information and
serves as the central point of communication. There is one
control task in each D-BOP execution. We refer to it as the
controller.

• A host management process manages parallel execution
within a host and coordinates other hosts through the control
process. There is one management process on each host. We
refer to it as a (host) manager.

• A worker process runs one or a series of PPR tasks on a
single processor. Work processes are dynamically created and
terminated and may perform computation speculatively. We
refer to it as a worker or a risky worker in the sense that the
job is speculative.

The first two types are common in a distributed system such as the
one used by MPI and Erlang. The unique problems in D-BOP design
are how to support speculation including the ability to run a PPR
task on an available machine, checking correctness and maintaining
progress in a distributed environment. To do so, the three types

1 2010/3/29

ppr
task t.1

ppr task t.2

gap g.1 g.2 gap g.3

Manager A
run g.1
spawn A.1
wait for t.1

add t.1 result
run g.2
wait for t.2

add t.2 result
run g.3

Worker A.1
run t.1
return t.1 result

Manager B
run g.1
spawn B.1
wait for t.1

add t.1 result
run g.2
wait for t.2

add t.2 result
run g.3

Worker B.1
skip t.1
run g.2
run t.2
return t.2 result

Host 1 Host 2

Controller
job t.1 job t.2

(a) A program execution consists of two PPR tasks, t.1 and t.2,
separated by gaps g.1, g.2, and g.3.

(b) Distributed parallel execution of t.1 on Host 1 and t.2 on Host 2. Both hosts run gaps g.1,
g.2 and g.3.

Figure 1. An example execution by BOP. The input program is a series of PPR tasks separated by gaps. The controller distributes PPR tasks
to hosts. A host manager forks a worker process to execute a PPR task. Inter-PPR gaps are executed by the control and every manager.

of processes divide the work and coordinate with each other as
follows.

• The control process distributes a group of PPR instances (or
jobs) to the management process of each host.

• On a host, the management process starts one or more work
processes based on the resources available on the host.

• After finishing its assigned PPR instances, a work process re-
ports its results for verification.

• If a finished PPR instance has a conflict, the control process re-
distributes the PPR instance and its successors for re-execution.
If all finished PPR instances are verified correct, the control pro-
cess continues distributing subsequent PPR instances until the
program finishes.

Figure 1 shows the distributed execution of an example program
on two hosts. The program has four PPR tasks separated by gaps.
The controller distributes PPR tasks to hosts. A host manager forks
a worker process to execute a PPR task. Inter-PPR gaps are executed
by the control and every manager.

To start a worker, BOP needs to create a process and initialize it
to have the right starting state. There are two basic ways of creating
an existing state: one is copying from the existing state, the other
is re-computing it from the beginning. On the same host, copying
can be easily done using Unix fork. Across hosts, we use a hybrid
scheme we call skeleton re-execution. Each host manager executes
all inter-PPR gaps, which is the “skeleton.” When it reaches a PPR
task, the manager waits for its successful completion (by some
worker), copies the data changes, and skips to continue the skeleton
execution at the next inter-PPR gap. With skeleton re-execution, a
manager maintains a local copy of program state and use it to start
worker tasks through fork.

An alternative to re-execution is to use remote checkpointing,
for example, to use a system like Condor to implement a remote
fork. Simple checkpointing would transfer the entire program
state, which is unnecessary. Incremental checkpointing may alle-

viate the problem. Checkpointing is a more general solution than
re-execution because it handles code that cannot be re-executed. In
our current prototype, we allow only CPU, memory, and basic file
I/O operations, where re-execution can be supported at the applica-
tion level. Checkpointing support can eliminate these restrictions.

2.1 Correctness Checking and Data Update
There are two basic problems in speculation support: correctness
checking and data update. Each problem has two basic solution
choices.

• Correctness checking can be done by centralized validation,
where checking is centralized in one process (the controller), or
distributed validation, where checking work is divided among
hosts.

• Data update can be done by eager update, where changes made
by one host are copied to all other hosts, or lazy update, where
changes are communicated only when they are needed by a
remote host.

The problem of data updates is similar to the ones in software dis-
tributed shared memory (S-DSM), while the problem of correct-
ness checking is unique to a speculative parallelization system. The
above choices can be combined to produce four basic designs.

• centralized validation, eager update. This design is similar to
shared-memory speculation. With eager update, a worker incurs
no network-related delays because all its data is available on the
local host. However, the controller may become a bottleneck,
since it must send all data updates to all hosts.

• distributed validation, eager update. With distributed valida-
tion, each host sends its data updates to all other hosts, which
avoids the bottleneck in centralized validation but still retains
the benefit of eager update. However, correctness checking is
repeated on all hosts (in parallel), which increases the total
checking and communication cost due to speculation.

2 2010/3/29

• distributed validation, lazy update. Lazy update incurs less
network traffic because it transfers data to a host only if it is
requested by one of its workers. The reduction of traffic comes
at an increase of latency. Instead of accessing data locally, a
worker must wait for data to be fetched from the network,
although the latency may be tolerated by creating more workers
to maintain full progress when some workers wait for data. With
distributed validation, the global memory state is distributed
instead of centralized and replicated.

• centralized validation, lazy update. This scheme maintains a
centralized global state. As the sole server of data requests, the
controller should inevitably become a bottleneck as the number
of lazy-update workers increases. This combination is likely not
a competitive option.

There are hybrids among these basic combinations. For example,
we may combine centralized and distributed validation by checking
correctness in the controller but sending data updates from each
host, in a way similar to the “migrate-on-read-miss” protocol in a
distributed, cache coherent system [3]. We may also divide program
data and use eager update in one set and lazy update in another.

3. Related Work
Software speculative parallelization LRPD test provides loop-
level software speculation for Fortran programs [14]. The support
has been extended to C programs using annotations [2], compiler
support [16, 18], and techniques developed for transactional mem-
ory [10,11,15]. Speculation support has been developed for Java to
support safe future [17], return-value speculation [12], and specu-
lative data abstractions [9].

Two recent systems [1, 13] use process-based approach to sup-
port multithreaded programs where processes are leveraged to en-
able strong isolation and to automate write buffer construction.

Process-based Speculation Process-based approach has been
used for speculative parallelization [1, 4, 5, 13]. It is used to im-
plement pipeline stages in multi-threaded software transactional
memory [13]. Similar controls can be imitated for threads [16].
It also supports speculative program optimization and its use in
parallel program profiling and memory-access checking [6].

4. Summary
We have presented the design of the D-BOP distributed speculative
parallelization system. With full support of automatic task manage-
ment, distributed communication, speculation state maintanance
and correctness checking, parallelization becomes so easy that it
only requires moderate effort from the programmers by just putting
suggestions in their sequential programs. Until recently a user faced
with the task of extracting coarse-grained parallelism in complex
code had to choose either a compiler to automate the task or a
language extension to parallelize a program completely by hand.
D-BOP provides a middle ground where parallelization is achieved
far beyond the capabilities of a compiler while only simple code
annotations are required.

References
[1] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe

multithreaded programming for C/C++. In Proceedings of the
International Conference on Object Oriented Programming, Systems,
Languages and Applications, 2009.

[2] M. H. Cintra and D. R. Llanos. Design space exploration of a software
speculative parallelization scheme. IEEE Transactions on Parallel
and Distributed Systems, 16(6):562–576, 2005.

[3] A. L. Cox and R. J. Fowler. Adaptive cache coherency for detecting
migratory shared data. In Proceedings of the International Symposium
on Computer Architecture, pages 98–108, 1993.

[4] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior oriented parallelization. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 223–234, 2007.

[5] Y. Jiang and X. Shen. Adaptive software speculation for enhancing the
cost-efficiency of behavior-oriented parallelization. In Proceedings of
the International Conference on Parallel Processing, pages 270–278,
2008.

[6] K. Kelsey, T. Bai, and C. Ding. Fast track: a software system
for speculative optimization. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 157–168,
2009.

[7] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew. Optimistic parallelism benefits from data partitioning. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 233–243,
2008.

[8] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew. Optimistic parallelism requires abstractions. In
Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 211–222, 2007.

[9] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala,
and L. P. Chew. Optimistic parallelism requires abstractions.
Communications of ACM, 52(9):89–97, 2009.

[10] M. Mehrara, J. Hao, P.-C. Hsu, and S. A. Mahlke. Parallelizing
sequential applications on commodity hardware using a low-cost
software transactional memory. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 166–176, 2009.

[11] C. E. Oancea, A. Mycroft, and T. Harris. A lightweight in-place
implementation for software thread-level speculation. In Proceedings
of the ACM Symposium on Parallel Algorithms and Architectures,
pages 223–232, 2009.

[12] C. J. F. Pickett and C. Verbrugge. Software thread level speculation for
the Java language and virtual machine environment. In Proceedings of
the Workshop on Languages and Compilers for Parallel Computing,
pages 304–318, 2005.

[13] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Spec-
ulative parallelization using software multi-threaded transactions. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 65–76,
2010.

[14] L. Rauchwerger and D. Padua. The LRPD test: Speculative
run-time parallelization of loops with privatization and reduction
parallelization. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, La Jolla, CA,
June 1995.

[15] M. F. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. L. Scott, C. Ding,
and P. Wu. Fastpath speculative parallelization. In Proceedings of
the Workshop on Languages and Compilers for Parallel Computing,
2009.

[16] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or Discard
execution model for speculative parallelization on multicores.
In Proceedings of the ACM/IEEE International Symposium on
Microarchitecture, pages 330–341, 2008.

[17] A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for Java.
In Proceedings of the International Conference on Object Oriented
Programming, Systems, Languages and Applications, pages 439–453,
2005.

[18] A. Zhai, S. Wang, P.-C. Yew, and G. He. Compiler optimizations
for parallelizing general-purpose applications under thread-level
speculation. pages 271–272, New York, NY, USA, 2008. ACM.

3 2010/3/29

